"""This module contain functions for automatic generation of geometry, for
example from an image.
Example::
>>> import pymunk
>>> from pymunk.autogeometry import march_soft
>>> img = [
... " xx ",
... " xx ",
... " xx ",
... " xx ",
... " xx ",
... " xxxxx",
... " xxxxx",
... ]
>>> def sample_func(point):
... x = int(point[0])
... y = int(point[1])
... return 1 if img[y][x] == "x" else 0
>>> pl_set = march_soft(pymunk.BB(0,0,6,6), 7, 7, .5, sample_func)
>>> print(len(pl_set))
2
The information in segments can now be used to create geometry, for example as
a Pymunk Poly or Segment::
>>> s = pymunk.Space()
>>> for poly_line in pl_set:
... for i in range(len(poly_line) - 1):
... a = poly_line[i]
... b = poly_line[i + 1]
... segment = pymunk.Segment(s.static_body, a, b, 1)
... s.add(segment)
"""
__docformat__ = "reStructuredText"
from typing import TYPE_CHECKING, Callable, List, Sequence, Tuple, Union, overload
if TYPE_CHECKING:
from .bb import BB
from . import area_for_poly
from ._chipmunk_cffi import ffi, lib
from .vec2d import Vec2d
_SegmentFunc = Callable[[Tuple[float, float], Tuple[float, float]], None]
_SampleFunc = Callable[[Tuple[float, float]], float]
_Polyline = Union[List[Tuple[float, float]], List[Vec2d]]
# Union is needed since List is invariant
# and Sequence cant be used since CFFI requires a List (or Tuple)
def _to_chipmunk(polyline: _Polyline) -> ffi.CData:
l = len(polyline)
_line = ffi.new("cpPolyline *", {"verts": l})
_line.count = l
_line.capacity = l
_line.verts = polyline
return _line
def _from_polyline_set(_set: ffi.CData) -> List[List[Vec2d]]:
lines = []
for i in range(_set.count):
line = []
l = _set.lines[i]
for j in range(l.count):
line.append(Vec2d(l.verts[j].x, l.verts[j].y))
lines.append(line)
return lines
[docs]
def is_closed(polyline: _Polyline) -> bool:
"""Returns true if the first vertex is equal to the last.
:param polyline: Polyline to simplify.
:type polyline: [(float,float)]
:rtype: `bool`
"""
return bool(lib.cpPolylineIsClosed(_to_chipmunk(polyline)))
[docs]
def simplify_curves(polyline: _Polyline, tolerance: float) -> List[Vec2d]:
"""Returns a copy of a polyline simplified by using the Douglas-Peucker
algorithm.
This works very well on smooth or gently curved shapes, but not well on
straight edged or angular shapes.
:param polyline: Polyline to simplify.
:type polyline: [(float,float)]
:param float tolerance: A higher value means more error is tolerated.
:rtype: [(float,float)]
"""
_line = lib.cpPolylineSimplifyCurves(_to_chipmunk(polyline), tolerance)
simplified = []
for i in range(_line.count):
simplified.append(Vec2d(_line.verts[i].x, _line.verts[i].y))
return simplified
[docs]
def simplify_vertexes(polyline: _Polyline, tolerance: float) -> List[Vec2d]:
"""Returns a copy of a polyline simplified by discarding "flat" vertexes.
This works well on straight edged or angular shapes, not as well on smooth
shapes.
:param polyline: Polyline to simplify.
:type polyline: [(float,float)]
:param float tolerance: A higher value means more error is tolerated.
:rtype: [(float,float)]
"""
_line = lib.cpPolylineSimplifyVertexes(_to_chipmunk(polyline), tolerance)
simplified = []
for i in range(_line.count):
simplified.append(Vec2d(_line.verts[i].x, _line.verts[i].y))
return simplified
[docs]
def to_convex_hull(polyline: _Polyline, tolerance: float) -> List[Vec2d]:
"""Get the convex hull of a polyline as a looped polyline.
:param polyline: Polyline to simplify.
:type polyline: [(float,float)]
:param float tolerance: A higher value means more error is tolerated.
:rtype: [(float,float)]
"""
_line = lib.cpPolylineToConvexHull(_to_chipmunk(polyline), tolerance)
hull = []
for i in range(_line.count):
hull.append(Vec2d(_line.verts[i].x, _line.verts[i].y))
return hull
[docs]
def convex_decomposition(polyline: _Polyline, tolerance: float) -> List[List[Vec2d]]:
"""Get an approximate convex decomposition from a polyline.
Returns a list of convex hulls that match the original shape to within
tolerance.
.. note::
If the input is a self intersecting polygon, the output might end up
overly simplified.
:param polyline: Polyline to simplify.
:type polyline: [(float,float)]
:param float tolerance: A higher value means more error is tolerated.
:rtype: [(float,float)]
"""
assert is_closed(polyline), "Cannot decompose an open polygon."
assert (
area_for_poly(polyline) >= 0
), "Winding is backwards. Try to reverse the vertices. (Are you passing a hole?)"
_line = _to_chipmunk(polyline)
_set = lib.cpPolylineConvexDecomposition(_line, tolerance)
return _from_polyline_set(_set)
[docs]
class PolylineSet(Sequence[List[Vec2d]]):
"""A set of Polylines.
Mainly intended to be used for its :py:meth:`collect_segment` function
when generating geometry with the :py:func:`march_soft` and
:py:func:`march_hard` functions.
"""
[docs]
def __init__(self) -> None:
"""Initalize a new PolylineSet"""
def free(_set: ffi.CData) -> None:
lib.cpPolylineSetFree(_set, True)
self._set = ffi.gc(lib.cpPolylineSetNew(), free)
[docs]
def collect_segment(self, v0: Tuple[float, float], v1: Tuple[float, float]) -> None:
"""Add a line segment to a polyline set.
A segment will either start a new polyline, join two others, or add to
or loop an existing polyline. This is mostly intended to be used as a
callback directly from :py:func:`march_soft` or :py:func:`march_hard`.
:param v0: Start of segment
:type v0: (float,float)
:param v1: End of segment
:type v1: (float,float)
"""
assert len(v0) == 2
assert len(v1) == 2
lib.cpPolylineSetCollectSegment(v0, v1, self._set)
def __len__(self) -> int:
return self._set.count
@overload
def __getitem__(self, index: int) -> List[Vec2d]:
...
@overload
def __getitem__(self, index: slice) -> "PolylineSet":
...
def __getitem__(self, key: Union[int, slice]) -> Union[List[Vec2d], "PolylineSet"]:
assert not isinstance(key, slice), "Slice indexing not supported"
if key >= self._set.count:
raise IndexError
line = []
l = self._set.lines[key]
for i in range(l.count):
line.append(Vec2d(l.verts[i].x, l.verts[i].y))
return line
[docs]
def march_soft(
bb: "BB",
x_samples: int,
y_samples: int,
threshold: float,
sample_func: _SampleFunc,
) -> PolylineSet:
"""Trace an *anti-aliased* contour of an image along a particular threshold.
The given number of samples will be taken and spread across the bounding
box area using the sampling function and context.
:param BB bb: Bounding box of the area to sample within
:param int x_samples: Number of samples in x
:param int y_samples: Number of samples in y
:param float threshold: A higher value means more error is tolerated
:param sample_func: The sample function will be called for
x_samples * y_samples spread across the bounding box area, and should
return a float.
:type sample_func: ``func(point: Tuple[float, float]) -> float``
:return: PolylineSet with the polylines found.
"""
pl_set = PolylineSet()
segment_data = ffi.new_handle(pl_set)
sample_data = ffi.new_handle(sample_func)
lib.cpMarchSoft(
bb,
x_samples,
y_samples,
threshold,
lib.ext_cpMarchSegmentFunc,
segment_data,
lib.ext_cpMarchSampleFunc,
sample_data,
)
return pl_set
[docs]
def march_hard(
bb: "BB",
x_samples: int,
y_samples: int,
threshold: float,
sample_func: _SampleFunc,
) -> PolylineSet:
"""Trace an *aliased* curve of an image along a particular threshold.
The given number of samples will be taken and spread across the bounding
box area using the sampling function and context.
:param BB bb: Bounding box of the area to sample within
:param int x_samples: Number of samples in x
:param int y_samples: Number of samples in y
:param float threshold: A higher value means more error is tolerated
:param sample_func: The sample function will be called for
x_samples * y_samples spread across the bounding box area, and should
return a float.
:type sample_func: ``func(point: Tuple[float, float]) -> float``
:return: PolylineSet with the polylines found.
"""
pl_set = PolylineSet()
segment_data = ffi.new_handle(pl_set)
sample_data = ffi.new_handle(sample_func)
lib.cpMarchHard(
bb,
x_samples,
y_samples,
threshold,
lib.ext_cpMarchSegmentFunc,
segment_data,
lib.ext_cpMarchSampleFunc,
sample_data,
)
return pl_set