Source code for pymunk.vec2d

# ----------------------------------------------------------------------------
# pymunk
# Copyright (c) 2007-2024 Victor Blomqvist
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ----------------------------------------------------------------------------

"""This module contain the Vec2d class that is used in all of pymunk when a
vector is needed.

It is easy to create Vec2ds::

    >>> from pymunk.vec2d import Vec2d
    >>> Vec2d(1, 2)
    Vec2d(1, 2)
    >>> xy = (1, 2)
    >>> Vec2d(*xy)
    Vec2d(1, 2)
    >>> '%.2f, %.2f' % Vec2d.from_polar(3, math.pi/4)
    '2.12, 2.12'

You can index into Vec2ds with both positional and attribute access::

    >>> v = Vec2d(1, 2)
    >>> v.x, v.y
    (1, 2)
    >>> v[0], v[1]
    (1, 2)

Vec2ds can be converted to lists or tuples, and they are of length 2::

    >>> list(Vec2d(1, 2))
    [1, 2]
    >>> tuple(Vec2d(1, 2))
    (1, 2)
    >>> len(Vec2d(1, 2))
    2

The Vec2d supports many common opertions, for example addition and 
multiplication::

    >>> Vec2d(7.3, 4.2) + Vec2d(1, 2)
    Vec2d(8.3, 6.2)
    >>> Vec2d(7.3, 4.2) * 2
    Vec2d(14.6, 8.4)

Vec2ds are immutable, meaning you cannot update them. But you can replace 
them::

    >>> v = Vec2d(1, 2)
    >>> v.x = 4
    Traceback (most recent call last):
    ...
    AttributeError: can't set attribute
    >>> v += (3, 4)
    >>> v
    Vec2d(4, 6)

Vec2ds can be compared::

    >>> Vec2d(7.3, 4.2) == Vec2d(7.3, 4.2)
    True
    >>> Vec2d(7.3, 4.2) == Vec2d(0, 0)
    False

The Vec2d class is used almost everywhere in pymunk for 2d coordinates and
vectors, for example to define gravity vector in a space. However, Pymunk is
smart enough to convert tuples or tuple like objects to Vec2ds so you usually
do not need to explicitly do conversions if you happen to have a tuple::

    >>> import pymunk
    >>> space = pymunk.Space()
    >>> space.gravity
    Vec2d(0.0, 0.0)
    >>> space.gravity = 3, 5
    >>> space.gravity
    Vec2d(3.0, 5.0)
    >>> space.gravity += 2, 6
    >>> space.gravity
    Vec2d(5.0, 11.0)

Finally, Vec2ds can be pickled and unpickled::

    >>> import pickle
    >>> data = pickle.dumps(Vec2d(5, 0.3))
    >>> pickle.loads(data)
    Vec2d(5, 0.3)

"""
__docformat__ = "reStructuredText"

import math
import numbers
import operator
from typing import NamedTuple, Tuple

__all__ = ["Vec2d"]


[docs] class Vec2d(NamedTuple): """2d vector class, supports vector and scalar operators, and also provides some high level functions. """ x: float y: float def __repr__(self) -> str: """String representaion of Vec2d (for debugging) >>> repr(Vec2d(1, 2.3)) 'Vec2d(1, 2.3)' """ return "Vec2d(%s, %s)" % (self.x, self.y) # Addition
[docs] def __add__(self, other: Tuple[float, float]) -> "Vec2d": # type: ignore[override] """Add a Vec2d with another Vec2d or Tuple of size 2. >>> Vec2d(3, 4) + Vec2d(1, 2) Vec2d(4, 6) >>> Vec2d(3, 4) + (1, 2) Vec2d(4, 6) """ assert ( len(other) == 2 ), f"{other} not supported. Only Vec2d and Sequence of length 2 is supported." return Vec2d(self.x + other[0], self.y + other[1])
def __radd__(self, other: Tuple[float, float]) -> "Vec2d": """Add a Tuple of size 2 with a Vec2d. >>> (1, 2) + Vec2d(3, 4) Vec2d(4, 6) """ return self.__add__(other) # Subtraction
[docs] def __sub__(self, other: Tuple[float, float]) -> "Vec2d": """Subtract a Vec2d with another Vec2d or Tuple of size 2. >>> Vec2d(3, 4) - Vec2d(1, 2) Vec2d(2, 2) >>> Vec2d(3, 4) - (1, 2) Vec2d(2, 2) """ return Vec2d(self.x - other[0], self.y - other[1])
def __rsub__(self, other: Tuple[float, float]) -> "Vec2d": """Subtract a Tuple of size 2 with a Vec2d. >>> (1, 2) - Vec2d(3, 4) Vec2d(-2, -2) """ assert ( len(other) == 2 ), f"{other} not supported. Only Vec2d and Sequence of length 2 is supported." return Vec2d(other[0] - self.x, other[1] - self.y) # Multiplication
[docs] def __mul__(self, other: float) -> "Vec2d": # type: ignore[override] """Multiply a Vec2d with a float. >>> Vec2d(3, 6) * 2.5 Vec2d(7.5, 15.0) """ assert isinstance(other, numbers.Real) return Vec2d(self.x * other, self.y * other)
def __rmul__(self, other: float) -> "Vec2d": # type: ignore[override] """Multiply a float with a Vec2d. >>> 2.5 * Vec2d(3, 6) Vec2d(7.5, 15.0) """ return self.__mul__(other) # Division
[docs] def __floordiv__(self, other: float) -> "Vec2d": """Floor division by a float (also known as integer division). >>> Vec2d(3, 6) // 2.0 Vec2d(1.0, 3.0) >>> Vec2d(0, 0) // 2.0 Vec2d(0.0, 0.0) """ assert isinstance(other, numbers.Real) return Vec2d(self.x // other, self.y // other)
[docs] def __truediv__(self, other: float) -> "Vec2d": """Division by a float. >>> Vec2d(3, 6) / 2.0 Vec2d(1.5, 3.0) >>> Vec2d(0,0) / 2.0 Vec2d(0.0, 0.0) """ assert isinstance(other, numbers.Real) return Vec2d(self.x / other, self.y / other)
# Unary operations
[docs] def __neg__(self) -> "Vec2d": """Return the negated version of the Vec2d. >>> -Vec2d(1, -2) Vec2d(-1, 2) >>> -Vec2d(0, 0) Vec2d(0, 0) """ return Vec2d(operator.neg(self.x), operator.neg(self.y))
[docs] def __pos__(self) -> "Vec2d": """Return the unary pos of the Vec2d. >>> +Vec2d(1, -2) Vec2d(1, -2) """ return Vec2d(operator.pos(self.x), operator.pos(self.y))
[docs] def __abs__(self) -> float: """Return the length of the Vec2d. >>> abs(Vec2d(3, 4)) 5.0 >>> abs(Vec2d(3, 4)) == Vec2d(3, 4).length True """ return self.length
# vectory functions
[docs] def get_length_sqrd(self) -> float: """Get the squared length of the vector. If the squared length is enough, it is more efficient to use this method instead of first calling get_length() or access .length and then do a x**2. >>> v = Vec2d(3, 4) >>> v.get_length_sqrd() == v.length**2 True >>> Vec2d(0, 0).get_length_sqrd() 0 """ return self.x**2 + self.y**2
@property def length(self) -> float: """Get the length of the vector. >>> Vec2d(10, 0).length 10.0 >>> '%.2f' % Vec2d(10, 20).length '22.36' >>> Vec2d(0, 0).length 0.0 """ return math.sqrt(self.x**2 + self.y**2)
[docs] def scale_to_length(self, length: float) -> "Vec2d": """Return a copy of this vector scaled to the given length. >>> Vec2d(1, 0).scale_to_length(10) Vec2d(10.0, 0.0) >>> '%.2f, %.2f' % Vec2d(10, 20).scale_to_length(20) '8.94, 17.89' >>> Vec2d(1, 0).scale_to_length(0) Vec2d(0.0, 0.0) """ old_length = self.length return Vec2d(self.x * length / old_length, self.y * length / old_length)
[docs] def rotated(self, angle_radians: float) -> "Vec2d": """Create and return a new vector by rotating this vector by angle_radians radians. >>> '%.2f' % Vec2d(2,0).rotated(math.pi).angle '3.14' >>> Vec2d(0,0).rotated(1) Vec2d(0.0, 0.0) """ cos = math.cos(angle_radians) sin = math.sin(angle_radians) x = self.x * cos - self.y * sin y = self.x * sin + self.y * cos return Vec2d(x, y)
[docs] def rotated_degrees(self, angle_degrees: float) -> "Vec2d": """Create and return a new vector by rotating this vector by angle_degrees degrees. >>> Vec2d(2,0).rotated_degrees(90.0).angle_degrees 90.0 >>> Vec2d(0, 0).rotated_degrees(90.0) Vec2d(0.0, 0.0) """ return self.rotated(math.radians(angle_degrees))
@property def angle(self) -> float: """The angle (in radians) of the vector. >>> '%.2f' % Vec2d(-1, 0).angle '3.14' >>> Vec2d(0, 0).angle 0 """ if self.get_length_sqrd() == 0: return 0 return math.atan2(self.y, self.x) @property def angle_degrees(self) -> float: """Get the angle (in degrees) of a vector. >>> Vec2d(0, 1).angle_degrees 90.0 >>> Vec2d(0, 0).angle_degrees 0.0 """ return math.degrees(self.angle)
[docs] def get_angle_between(self, other: Tuple[float, float]) -> float: """Get the angle between the vector and the other in radians. >>> '%.2f' % Vec2d(3, 0).get_angle_between(Vec2d(-1, 0)) '3.14' >>> Vec2d(3, 0).get_angle_between(Vec2d(0, 0)) 0.0 >>> Vec2d(0, 0).get_angle_between(Vec2d(0, 0)) 0.0 """ assert len(other) == 2 cross = self.x * other[1] - self.y * other[0] dot = self.x * other[0] + self.y * other[1] return math.atan2(cross, dot)
[docs] def get_angle_degrees_between(self, other: "Vec2d") -> float: """Get the angle between the vector and the other in degrees. >>> Vec2d(3, 0).get_angle_degrees_between(Vec2d(-1, 0)) 180.0 >>> Vec2d(3, 0).get_angle_degrees_between(Vec2d(0, 0)) 0.0 >>> Vec2d(0, 0).get_angle_degrees_between(Vec2d(0, 0)) 0.0 """ return math.degrees(self.get_angle_between(other))
[docs] def normalized(self) -> "Vec2d": """Get a normalized copy of the vector. Note: This function will return 0 if the length of the vector is 0. >>> Vec2d(3, 0).normalized() Vec2d(1.0, 0.0) >>> Vec2d(3, 4).normalized() Vec2d(0.6, 0.8) >>> Vec2d(0, 0).normalized() Vec2d(0, 0) """ length = self.length if length != 0: return self / length return Vec2d(0, 0)
[docs] def normalized_and_length(self) -> Tuple["Vec2d", float]: """Normalize the vector and return its length before the normalization. >>> Vec2d(3, 0).normalized_and_length() (Vec2d(1.0, 0.0), 3.0) >>> Vec2d(3, 4).normalized_and_length() (Vec2d(0.6, 0.8), 5.0) >>> Vec2d(0, 0).normalized_and_length() (Vec2d(0, 0), 0) """ length = self.length if length != 0: return self / length, length return Vec2d(0, 0), 0
[docs] def perpendicular(self) -> "Vec2d": """Get a vertical vector rotated 90 degrees counterclockwise from the original vector. >>> Vec2d(1, 2).perpendicular() Vec2d(-2, 1) """ return Vec2d(-self.y, self.x)
[docs] def perpendicular_normal(self) -> "Vec2d": """Get a vertical normalized vector rotated 90 degrees counterclockwise from the original vector. >>> Vec2d(1, 0).perpendicular_normal() Vec2d(0.0, 1.0) >>> Vec2d(2, 0).perpendicular_normal() Vec2d(0.0, 1.0) >>> Vec2d(1, 1).perpendicular_normal().angle_degrees 135.0 >>> Vec2d(1, 1).angle_degrees + 90 135.0 >>> Vec2d(0, 0).perpendicular_normal() Vec2d(0, 0) """ length = self.length if length != 0: return Vec2d(-self.y / length, self.x / length) return Vec2d(self.x, self.y)
[docs] def dot(self, other: Tuple[float, float]) -> float: """The dot product between the vector and other vector. v1.dot(v2) -> v1.x*v2.x + v1.y*v2.y >>> Vec2d(5, 0).dot((0, 5)) 0.0 >>> Vec2d(1, 2).dot((3, 4)) 11.0 """ assert len(other) == 2 return float(self.x * other[0] + self.y * other[1])
[docs] def get_distance(self, other: Tuple[float, float]) -> float: """The distance between the vector and other vector. >>> Vec2d(0, 2).get_distance((0, -3)) 5.0 >>> a, b = Vec2d(3, 2), Vec2d(4,3) >>> a.get_distance(b) == (a - b).length == (b - a).length True """ assert len(other) == 2 return math.sqrt((self.x - other[0]) ** 2 + (self.y - other[1]) ** 2)
[docs] def get_dist_sqrd(self, other: Tuple[float, float]) -> float: """The squared distance between the vector and other vector. It is more efficent to use this method than to call get_distance() first and then do a square() on the result. >>> Vec2d(1, 0).get_dist_sqrd((1, 10)) 100 >>> Vec2d(1, 2).get_dist_sqrd((10, 11)) 162 >>> Vec2d(1, 2).get_distance((10, 11))**2 162.0 """ assert len(other) == 2 return (self.x - other[0]) ** 2 + (self.y - other[1]) ** 2
[docs] def projection(self, other: Tuple[float, float]) -> "Vec2d": """Project this vector on top of other vector. >>> Vec2d(10, 1).projection((5.0, 0)) Vec2d(10.0, 0.0) >>> Vec2d(10, 1).projection((10, 5)) Vec2d(8.4, 4.2) >>> Vec2d(10, 1).projection((0, 0)) Vec2d(0, 0) """ assert len(other) == 2 other_length_sqrd = other[0] * other[0] + other[1] * other[1] if other_length_sqrd == 0.0: return Vec2d(0, 0) # projected_length_times_other_length = self.dot(other) # new_length = projected_length_times_other_length / other_length_sqrd new_length = self.dot(other) / other_length_sqrd return Vec2d(other[0] * new_length, other[1] * new_length)
[docs] def cross(self, other: Tuple[float, float]) -> float: """The cross product between the vector and the other. v1.cross(v2) -> v1.x*v2.y - v1.y*v2.x >>> Vec2d(1, 0.5).cross((4, 6)) 4.0 """ assert len(other) == 2 return self.x * other[1] - self.y * other[0]
[docs] def interpolate_to(self, other: Tuple[float, float], range: float) -> "Vec2d": """Vector interpolation between the current vector and another vector. >>> Vec2d(10,20).interpolate_to((20,-20), 0.1) Vec2d(11.0, 16.0) """ assert len(other) == 2 return Vec2d( self.x + (other[0] - self.x) * range, self.y + (other[1] - self.y) * range )
[docs] def convert_to_basis( self, x_vector: Tuple[float, float], y_vector: Tuple[float, float] ) -> "Vec2d": """Convert the vector to a new basis defined by the given x and y vectors. >>> Vec2d(10, 1).convert_to_basis((5, 0), (0, 0.5)) Vec2d(2.0, 2.0) """ assert len(x_vector) == 2 assert len(y_vector) == 2 x = self.dot(x_vector) / Vec2d(*x_vector).get_length_sqrd() y = self.dot(y_vector) / Vec2d(*y_vector).get_length_sqrd() return Vec2d(x, y)
@property def int_tuple(self) -> Tuple[int, int]: """The x and y values of this vector as a tuple of ints. Use `round()` to round to closest int. >>> Vec2d(0.9, 2.4).int_tuple (1, 2) """ return round(self.x), round(self.y)
[docs] @staticmethod def zero() -> "Vec2d": """A vector of zero length. >>> Vec2d.zero() Vec2d(0, 0) """ return Vec2d(0, 0)
[docs] @staticmethod def unit() -> "Vec2d": """A unit vector pointing up. >>> Vec2d.unit() Vec2d(0, 1) """ return Vec2d(0, 1)
[docs] @staticmethod def ones() -> "Vec2d": """A vector where both x and y is 1. >>> Vec2d.ones() Vec2d(1, 1) """ return Vec2d(1, 1)
[docs] @staticmethod def from_polar(length: float, angle: float) -> "Vec2d": """Create a new Vec2d from a length and an angle (in radians). >>> Vec2d.from_polar(2, 0) Vec2d(2.0, 0.0) >>> Vec2d(2, 0).rotated(0.5) == Vec2d.from_polar(2, 0.5) True >>> v = Vec2d.from_polar(2, 0.5) >>> v.length, v.angle (2.0, 0.5) """ return Vec2d(math.cos(angle) * length, math.sin(angle) * length)
# Extra functions, mainly for chipmunk
[docs] def cpvrotate(self, other: Tuple[float, float]) -> "Vec2d": """Use complex multiplication to rotate this vector by the other.""" assert len(other) == 2 return Vec2d( self.x * other[0] - self.y * other[1], self.x * other[1] + self.y * other[0] )
[docs] def cpvunrotate(self, other: Tuple[float, float]) -> "Vec2d": """The inverse of cpvrotate.""" assert len(other) == 2 return Vec2d( self.x * other[0] + self.y * other[1], self.y * other[0] - self.x * other[1] )